DeepMind发了篇物理论文,用神经网络求解薛定谔方程

新闻 深度学习
近日,DeepMind开源了一个“费米网络”(FermiNet),用来求解分子的电子行为,在30个电子的有机分子上也达到了很高的精度。

[[347629]]

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。

 只要解出薛定谔方程,你就能预测分子的化学性质。但现实很骨感,迄今为止,科学家只能精确求解一个电子的氢原子,即使是只有两个电子的氦原子都无能为力。

DeepMind发了篇物理论文,用神经网络求解薛定谔方程

原因是有两个以上电子组成的薛定谔方程实在太复杂,根本无法精确求解。

既然找不到精确解,科学家们希望能找到一种实用的近似解求法,只要结果足够近似,也能预测原子或分子的行为。

近日,DeepMind开源了一个“费米网络”(FermiNet),用来求解分子的电子行为,在30个电子的有机分子上也达到了很高的精度。文章结果发表在期刊Physical Review Research上。

为什么叫费米网络

在量子力学中,电子没有精确的位置,我们只能从波函数预测电子在空间中出现的概率,也就是电子云。

比如氢原子的电子云就有以下几种形态。

DeepMind发了篇物理论文,用神经网络求解薛定谔方程

曲面内表示电子出现的高概率区域。蓝色区域波函数为正,紫色区域波函数为负。(注:波函数平方表示电子出现的概率)

误差小于0.5%即可预测分子的能量,但这对于化学家来说远远不够,要准确预测分子的形状和化学性质,需要0.001%的精度,相当于以毫米精度测量足球场宽度。

电子在分子中不仅受到原子核的吸引力、其他电子的斥力,还遵循着量子力学中的费米-狄拉克统计:如果两个电子交换状态,波函数要反号。

DeepMind发了篇物理论文,用神经网络求解薛定谔方程

这也意味着两个电子的状态不可能完全相同,否则波函数为0。这在物理中叫做“泡利不相容原理”。

费米网络正是从这个基本物理原理出发,因此DeepMind将其命名为FermiNet。

交换后符号相反,这可能会让你想到线性代数中的行列式。行列式任意两行交换,输出结果就要乘以-1。

物理学家也是这样想的,他们用所谓“Slater行列式”来表示电子波函数,但实际情况比Slater行列式要复杂得多,为了更精确表示电子行为,往往需要几百万个Slater行列式的线性组合。

DeepMind发了篇物理论文,用神经网络求解薛定谔方程

工作原理

与函数线性组合相比,神经网络在表示复杂函数时往往更具有优势。

在构造FermiNet之初,研究人员就把泡利不相容原理作为第一性原理引入神经网络。

在FermiNet中,每个电子都有单独的信息流。不仅如此,他们将网络每一层所有流平均化,然后传递给下一层的每一流。这样,这些流就具有正确的反对称性要求。

DeepMind发了篇物理论文,用神经网络求解薛定谔方程

而且在FermiNet行列式中的每个元素都包含所有电子,效率远远超出波函数只有单个电子的情况。

与Slater行列式不同,FermiNet是通用函数逼近器,如果神经网络层变得足够宽,则可以无限逼近真实波函数。

这意味着,如果我们正确地训练这些网络,它们应该能够将几乎完全精确的解拟合到薛定谔方程。

训练是通过最小化系统的能量来拟合FermiNet。FermiNet用蒙特卡洛方法随机选择电子构型,在每个电子排列中局部评估能量,累加每个排列的贡献,并将其最小化。

实验结果

研究人员将FermiNet用在具有10个电子以内的原子上,能量精度均在99.8%左右。

DeepMind发了篇物理论文,用神经网络求解薛定谔方程

对于30个电子的环二丁烷,FermiNet算出的能量达到了97%的精度,虽然精度不是很高,但DeepMind表示,作为一种“便宜但不够准确”的方法,这是巨大的成就。

现在FermiNet已经在GitHub上开源,代码基于TensorFlow实现,如果你想用它算一算氢分子,不妨试试这串代码:

经过100次迭代后,该程序会输出一个氢原子波函数文件。官方建议最好用GPU来运行,因为他们计算乙烯分子就用8个GPU花2天时间才算出。

除了研究电子外,DeepMind还将神经网络用于其他基础科学研究,比如蛋白质折叠、玻璃态动力学、晶格量子色动力学等。

责任编辑:张燕妮 来源: 量子位
相关推荐

2020-12-23 16:14:04

AI 数据人工智能

2019-10-17 09:41:24

量子计算机芯片超算

2021-08-16 10:13:26

AI DeepMind人工智能

2021-04-22 09:44:40

神经网络AI算法

2017-10-09 11:21:46

神经网络OpenAI非线性

2021-08-02 14:15:18

谷歌DeepMind神经网络

2022-09-05 17:40:58

DeepMind人工智能

2017-07-18 10:20:30

Python神经网络

2017-03-13 14:45:51

Python神经网络基础

2020-02-21 15:33:44

人工智能机器学习技术

2017-03-20 15:23:46

人工智能连续学习神经网络

2022-02-23 09:27:37

神经网络人工智能模型

2018-07-03 16:10:04

神经网络生物神经网络人工神经网络

2017-07-03 10:58:35

DeepMind深度学习

2022-06-06 13:05:32

神经网络宇宙

2021-12-07 09:51:06

神经网络AI算法

2024-02-29 11:53:22

神经网络NNVMC偏微分方程求解器

2020-12-19 11:05:57

循环神经网络PyTorch神经网络

2021-09-24 09:45:27

Python神经网络人工智能

2020-09-08 13:02:00

Python神经网络感知器
点赞
收藏

51CTO技术栈公众号